Return to site

AS/A-Level Maths - Calculations with Log

Calculations with Log

August 9, 2021

Logs have some very useful properties and let's learn about them in A-Level Maths!

Properties

logb mn = logb m + logb n

logb (m/n) = logb m −logb n

logb ma = a logb m

logb m = logb n if and only if m = n

Note that for all of the above properties we require that b > 0, b ≠ 1, and m, n > 0. 

Note also that logb 1 = 0 for any b ≠ 0 since b0 = 1. 

In addition, logb b = 1 since b1 = b. We can apply these properties to simplify logarithmic expressions.

Example 1 :

logb (xy/z) 

= logb xy −logb z

= logb x + logb y −logb z

Example 2 :

log5 5p = p log5 5

= p ×1

= p

Example 3 :

log2 (8x)1/3 

= 1/3 log2 8x

= 1/3 [log2 8 + log2 x]

= 1/3 [3 + log2 x]

= 1 + 1/3 log2 x

Example 4 : 

Find x if 2 logb 5 + 1/2 logb 9 −logb 3 = logb x

logb 52 + logb 91/2 −logb3 = logb x

logb 25 + logb 3 −logb 3 = logb x

logb 25 = logb x

x = 25

Example 5 :

log2 (8x3/2y) 

= log2 8x3 −log2 2y

= log2 8 + log2 x3 −[log2 2 + log2 y]

= 3 + 3 log2 x −[1 + log2 y]

= 3 + 3 log2 x −1 −log2 y

= 2 + 3 log2 x −log2 y

Exercises:

1. Use the logarithm laws to simplify the following:

(a) log2 xy −log2 x2

(b) log2 (8x2/y) + log2 2xy

(c) log3 9xy2 −log3 27xy

(d) log4(xy)3 −log4 xy

(e) log3 9x4 −log3(3x)2

2. Find x if:

(a) 2 logb 4 + logb 5 −logb 10 = logb x

(b) logb 30 −logb 52 = logb x

(c) logb 8 + logb x2 = logb x

(d) logb(x + 2) −logb 4 = logb 3x

(e) logb(x −1) + logb 3 = logb x

Ans:

1. (a) log2 (y/x)

(b) 4 + 3 log2 x

(c) log3 y −1

(d) 2 log4(xy)

(e) 0

2. (a) 8 

(b) 6/5 

(c) 1/8 

(d) 2/11 

(e) 1.5

Drafted by Eunice (Maths)